歡迎來到紫外可見分光光度計|分光光度計供應商-讓奇(上海)儀器科技有限公司網站

超微量分光光度計如何應用于現代分子生物實驗室

来源:/   作者:紫外可見分光光度計    更新日期:2017-06-12 10:32:34    点击:2440

超微量分光光度計如何應用于現代分子生物實驗室

 

超微量分光光度計已經成爲現代分子生物實驗室常規儀器,主要設計用于生命科學實驗室蛋白質組學和基因組學下述應用領域:

 

核酸的定量

 

核酸的定量是超微量分光光度計使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。

事实上,超微量分光光度計设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗粒对测试结果的影响,要求核酸吸光值至少大于0.1A,吸光值最好在0.1-1.5A。在此范围内,颗粒的干扰相对较小,结果稳定。

從而意味著樣品的濃度不能過低,或者過高(超過光度計的測試範圍)。最後是操作因素,如混合要充分,否則吸光值太低,甚至出現負值;混合液不能存在氣泡,空白液無懸浮物,否則讀數漂移劇烈;必須使用相同的比色杯測試空白液和樣品,否則濃度差異太大;換算系數和樣品濃度單位選擇一致;不能采用窗口磨損的比色杯;樣品的體積必須達到比色杯要求的最小體積等多個操作事項。

除了核酸浓度,分光光度計显示几个非常重要的比值表示样品的纯度,如A260/A280的比值,用于评估样品的纯度,因为蛋白的吸收峰是280nm。纯净的样品,比值大于1.8(DNA)或者2.0(RNA)。如果比值低于1.8或者2.0,表示存在蛋白质或者酚类物质的影响。A230表示样品中存在一些污染物,如碳水化合物,多肽,苯酚等,较纯净的核酸A260/A230的比值大于2.0。A320检测溶液的混浊度和其他干扰因子。纯样品,A320一般是0。

 

蛋白質的直接定量(UV法)

 

這種方法是在280nm波長,直接測試蛋白。選擇Warburg公式,光度計可以直接顯示出樣品的濃度,或者是選擇相應的換算方法,將吸光值轉換爲樣品濃度。

蛋白質測定過程非常簡單,先測試空白液,然後直接測試蛋白質。由于緩沖液中存在一些雜質,一般要消除320nm的“背景”信息,設定此功能“開”。與測試核酸類似,要求A280的吸光值至少大于0.1A,最佳的線性範圍在1.0-1.5之間。實驗中選擇Warburg公式顯示樣品濃度時,發現讀數“漂移”。這是一個正常的現象。事實上,只要觀察A280的吸光值的變化範圍不超過1%,表明結果非常穩定。

漂移的原因是因爲Warburg公式吸光值換算成濃度,乘以一定的系數,只要吸光值有少許改變,濃度就會被放大,從而顯得結果很不穩定。

蛋白質直接定量方法,適合測試較純淨、成分相對單一的蛋白質。紫外直接定量法相對于比色法來說,速度快,操作簡單;但是容易受到平行物質的幹擾,如DNA的幹擾;另外敏感度低,要求蛋白的濃度較高。

 

比色法蛋白質定量

 

蛋白質通常是多種蛋白質的化合物,比色法測定的基礎是蛋白質構成成分:氨基酸(如酪氨酸,絲氨酸)與外加的顯色基團或者染料反應,産生有色物質。有色物質的濃度與蛋白質反應的氨基酸數目直接相關,從而反應蛋白質濃度。

比色方法一般有BCA,Bradford,Lowry等幾種方法。

Lowry法:以最早期的Biuret反應爲基礎,並有所改進。蛋白質與Cu2+反應,産生藍色的反應物。但是與Biuret相比,Lowry法敏感性更高。缺點是需要順序加入幾種不同的反應試劑;反應需要的時間較長;容易受到非蛋白物質的影響;含EDTA,Tritonx-100,ammoniasulfate等物質的蛋白不適合此種方法。

BCA(Bicinchoninineacidassay)法:這是一種較新的、更敏感的蛋白測試法。要分析的蛋白在堿性溶液裏與Cu2+反應産生Cu+,後者與BCA形成螯合物,形成紫色化合物,吸收峰在562nm波長。此化合物與蛋白濃度的線性關系極強,反應後形成的化合物非常穩定。相對于Lowry法,操作簡單,敏感度高。但是與Lowry法相似的是容易受到蛋白質之間以及去汙劑的幹擾。

Bradford法:這種方法的原理是蛋白質與考馬斯亮蘭結合反應,産生的有色化合物吸收峰595nm。其最大的特點是,敏感度好,是Lowry和BCA兩種測試方法的2倍;操作更簡單,速度更快;只需要一種反應試劑;化合物可以穩定1小時,方便結果;而且與一系列幹擾Lowry,BCA反應的還原劑(如DTT,巯基乙醇)相容。但是對于去汙劑依然是敏感的。最主要的缺點是不同的標准品會導致同一樣品的結果差異較大,無可比性。

某些初次接觸比色法測定的研究者可能爲各種比色法測出的結果並不一致,感到迷惑,究竟該相信哪種方法?由于各種方法反應的基團以及顯色基團不一,所以同時使用幾種方法對同一樣品得出的樣品濃度無可比性。例如:Keller等測試人奶中的蛋白,結果Lowry,BCA測出的濃度明顯高于Bradford,差異顯著。即使是測定同一樣品,同一種比色法選擇的標准樣品不一致,測試後的濃度也不一致。如用Lowry測試細胞勻漿中的蛋白質,以BSA作標准品,濃度1.34mg/ml,以a球蛋白作標准品,濃度2.64mg/ml。因此,在選擇比色法之前,最好是參照要測試的樣本的化學構成,尋找化學構成類似的標准蛋白作標准品。另外,比色法定量蛋白質,經常出現的問題是樣品的吸光值太低,導致測出的樣品濃度與實際的濃度差距較大。關鍵問題是,反應後的顔色是有一定的半衰期,所以每種比色法都列出了反應測試時間,所有的樣品(包括標准樣品),都必須在此時間內測試。時間過長,得到的吸光值變小,換算的濃度值降低。除此,反應溫度、溶液PH值等都是影響實驗的重要原因。此外,非常重要的是,最好是用塑料的比色法。避免使用石英或者玻璃材質的比色杯,因爲反應後的顔色會讓石英或者玻璃著色,導致樣品吸光值不准確。

 

細菌細胞密度(OD600)

 

实验室确定细菌生长密度和生长期,多根据经验和目测推断细菌的生长密度。在遇到要求较高的实验,需要采用分光光度計准确测定细菌细胞密度。OD600是追踪液体培养物中微生物生长的标准方法。以未加菌液的培养液作为空白液,之后定量培养后的含菌培养液。为了保证正确操作,必须针对每种微生物和每台仪器用显微镜进行细胞计数,做出校正曲线。实验中偶尔会出现菌液的OD值出现负值,原因是采用了显色的培养基,即细菌培养一段时间后,与培养基反应,发生变色反应。另外,需要注意的是,测试的样品不能离心,保持细菌悬浮状态。